# vLLM Multimodal This document provides a comprehensive guide for multimodal inference using vLLM backend in Dynamo. > [!IMPORTANT] > **Security Requirement**: All multimodal workers require the `--enable-multimodal` flag to be explicitly set at startup. This is a security feature to prevent unintended processing of multimodal data from untrusted sources. Workers will fail at startup if multimodal flags (e.g., `--multimodal-worker`, `--multimodal-processor`) are used without `--enable-multimodal`. > This flag is analogous to `--enable-mm-embeds` in vllm serve but also extends it to all multimodal content (url, embeddings, b64). ## Support Matrix | Modality | Input Format | Aggregated | Disaggregated | Notes | |----------|--------------|------------|---------------|-------| | **Image** | HTTP/HTTPS URL | Yes | Yes | Full support for all image models | | **Image** | Data URL (Base64) | Yes | Yes | Inline base64-encoded images | | **Video** | HTTP/HTTPS URL | Yes | Yes | Frame extraction and processing | | **Audio** | HTTP/HTTPS URL | Yes | Yes | Experimental - requires audio dependencies | ### Supported URL Formats | Format | Example | Description | |--------|---------|-------------| | **HTTP/HTTPS** | `http://example.com/image.jpg` | Remote media files | | **Data URL** | `...` | Base64-encoded inline data | ## Deployment Patterns vLLM supports all multimodal deployment patterns. See [Architecture Patterns](/dynamo/v-0-9-0/user-guides/multimodality-support#architecture-patterns) for detailed explanations. | Pattern | Supported | Launch Script | Notes | |---------|-----------|---------------|-------| | EPD (Simple Aggregated) | ✅ | `agg_multimodal.sh` | Easiest setup | | E/PD (Encode Separate) | ✅ | `agg_multimodal_epd.sh` | Separate encode worker | | E/P/D (Full Disaggregation) | ✅ | `disagg_multimodal_epd.sh` | All stages separate | | EP/D (Traditional Disaggregated) | ✅ | `disagg_multimodal_llama.sh` | For Llama 4 models | | E/PD (EC Connector) | ✅ | `agg_multimodal_ec_connector.sh` | vLLM-native encoder with ECConnector | ### Component Flags | Component | Flag | Purpose | |-----------|------|---------| | Processor | `--multimodal-processor` | HTTP entry, tokenization | | Encode Worker | `--multimodal-encode-worker` | Media encoding | | PD Worker | `--multimodal-worker` | Prefill + Decode | | Prefill Worker | `--multimodal-worker --is-prefill-worker` | Prefill only | | Decode Worker | `--multimodal-decode-worker` | Decode only | | Encode+Prefill Worker | `--multimodal-encode-prefill-worker --is-prefill-worker` | Combined (Llama 4) | | vLLM Native Encoder | `--vllm-native-encoder-worker` | vLLM-native encoding with ECConnector | ## Use the Latest Release We recommend using the latest stable release of dynamo to avoid breaking changes: [![GitHub Release](https://img.shields.io/github/v/release/ai-dynamo/dynamo)](https://github.com/ai-dynamo/dynamo/releases/latest) You can find the [latest release](https://github.com/ai-dynamo/dynamo/releases/latest) and check out the corresponding branch with: ```bash git checkout $(git describe --tags $(git rev-list --tags --max-count=1)) ``` ## Image Serving ### E/PD Serving (Encode Separate) **Components:** - workers: [EncodeWorkerHandler](https://github.com/ai-dynamo/dynamo/blob/main/components/src/dynamo/vllm/multimodal_handlers/encode_worker_handler.py) for encoding and [MultimodalPDWorkerHandler](https://github.com/ai-dynamo/dynamo/blob/main/components/src/dynamo/vllm/multimodal_handlers/worker_handler.py) for prefilling and decoding. - processor: Tokenizes the prompt and passes it to the EncodeWorkerHandler. - frontend: HTTP endpoint to handle incoming requests. **Workflow:** The EncodeWorkerHandler encodes the image and passes the embeddings to the MultimodalPDWorkerHandler via NATS and RDMA. The work complete event is sent via NATS, while the embeddings tensor is transferred via RDMA through the NIXL interface. ```mermaid flowchart LR HTTP --> processor processor --> HTTP processor --image_url--> encode_worker encode_worker --> processor encode_worker --embeddings--> pd_worker pd_worker --> encode_worker ``` > **Note:** Aggregated serving supports LLaVA 1.5 7B and Qwen2.5-VL-7B-Instruct. Disaggregated serving is currently only confirmed for LLaVA. **Launch:** ```bash cd $DYNAMO_HOME/examples/backends/vllm # Serve a LLaVA 1.5 7B model: bash launch/agg_multimodal_epd.sh --model llava-hf/llava-1.5-7b-hf # Serve a Qwen2.5-VL model: bash launch/agg_multimodal_epd.sh --model Qwen/Qwen2.5-VL-7B-Instruct ``` **Client:** ```bash curl http://localhost:8000/v1/chat/completions \ -H "Content-Type: application/json" \ -d '{ "model": "llava-hf/llava-1.5-7b-hf", "messages": [ { "role": "user", "content": [ { "type": "text", "text": "What is in this image?" }, { "type": "image_url", "image_url": { "url": "http://images.cocodataset.org/test2017/000000155781.jpg" } } ] } ], "max_tokens": 300, "temperature": 0.0, "stream": false }' ``` ### E/P/D Serving (Full Disaggregation) **Components:** - workers: [EncodeWorkerHandler](https://github.com/ai-dynamo/dynamo/blob/main/components/src/dynamo/vllm/multimodal_handlers/encode_worker_handler.py) for encoding, [MultimodalDecodeWorkerHandler](https://github.com/ai-dynamo/dynamo/blob/main/components/src/dynamo/vllm/multimodal_handlers/worker_handler.py) for decoding, and [MultimodalPDWorkerHandler](https://github.com/ai-dynamo/dynamo/blob/main/components/src/dynamo/vllm/multimodal_handlers/worker_handler.py) for prefilling. - processor: Tokenizes the prompt and passes it to the EncodeWorkerHandler. - frontend: HTTP endpoint to handle incoming requests. **Workflow:** For the LLaVA model, embeddings are only required during the prefill stage. The EncodeWorkerHandler is connected directly to the prefill worker, encoding the image and passing embeddings via NATS and RDMA. The prefill worker performs the prefilling step and forwards the KV cache to the decode worker. ```mermaid flowchart LR HTTP --> processor processor --> HTTP processor --image_url--> encode_worker encode_worker --> processor encode_worker --embeddings--> prefill_worker prefill_worker --> encode_worker prefill_worker --> decode_worker decode_worker --> prefill_worker ``` **Launch:** ```bash cd $DYNAMO_HOME/examples/backends/vllm bash launch/disagg_multimodal_epd.sh --model llava-hf/llava-1.5-7b-hf ``` > [!NOTE] Disaggregation is currently only confirmed to work with LLaVA. Qwen2.5-VL is not confirmed to be supported. ## ECConnector Serving ECConnector is vLLM's native connector for transferring multimodal embeddings via an Embedding Cache. The encoder worker acts as a **producer** (writes embeddings), while the PD worker acts as a **consumer** (reads embeddings). **Workflow:** ```mermaid flowchart LR HTTP --> processor[EC Processor] processor --image_url--> encoder[vLLM Native Encoder
Producer] encoder --writes--> cache[(Embedding Cache)] cache --reads--> pd[PD Worker
Consumer] pd --> processor processor --> HTTP ``` **Launch:** ```bash cd $DYNAMO_HOME/examples/backends/vllm bash launch/agg_multimodal_ec_connector.sh --model llava-hf/llava-1.5-7b-hf # Custom storage path for Embedding Cache bash launch/agg_multimodal_ec_connector.sh --ec-storage-path /shared/encoder-cache ``` **Client:** Same as [E/PD Serving](#epd-serving-encode-separate) ## Llama 4 Serving The Llama 4 model family is natively multimodal. Unlike LLaVA, they do not directly consume image embeddings as input (see the [vLLM support matrix](https://docs.vllm.ai/en/latest/models/supported_models.html#text-generation_1)). Therefore, the encoder worker is not used and encoding is done alongside prefill. Example model: `meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8` on H100x8. ### Llama 4 Aggregated Serving **Workflow:** ```mermaid flowchart LR HTTP --> processor processor --> HTTP processor --image_url--> pd_worker pd_worker --> processor ``` **Launch:** ```bash cd $DYNAMO_HOME/examples/backends/vllm bash launch/agg_multimodal_llama.sh ``` **Client:** ```bash curl http://localhost:8000/v1/chat/completions \ -H "Content-Type: application/json" \ -d '{ "model": "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8", "messages": [ { "role": "user", "content": [ { "type": "text", "text": "What is in this image?" }, { "type": "image_url", "image_url": { "url": "http://images.cocodataset.org/test2017/000000155781.jpg" } } ] } ], "max_tokens": 300, "temperature": 0.0, "stream": false }' ``` ### Llama 4 Disaggregated Serving **Workflow:** ```mermaid flowchart LR HTTP --> processor processor --> HTTP processor --image_url--> prefill_worker prefill_worker --> processor prefill_worker --> decode_worker decode_worker --> prefill_worker ``` **Launch:** ```bash cd $DYNAMO_HOME/examples/backends/vllm bash launch/disagg_multimodal_llama.sh --head-node # On a separate node with NATS_SERVER and ETCD_ENDPOINTS pointing to head node: cd $DYNAMO_HOME/examples/backends/vllm bash launch/disagg_multimodal_llama.sh ``` ## Video Serving ### Video Aggregated Serving **Components:** - workers: [VideoEncodeWorker](https://github.com/ai-dynamo/dynamo/tree/main/examples/multimodal/components/video_encode_worker.py) for decoding video into frames, and [VllmPDWorker](https://github.com/ai-dynamo/dynamo/tree/main/examples/multimodal/components/worker.py) for prefilling and decoding. - processor: Tokenizes the prompt and passes it to the VideoEncodeWorker. - frontend: HTTP endpoint to handle incoming requests. **Workflow:** The VideoEncodeWorker decodes the video into frames. Unlike the image pipeline which generates embeddings, this pipeline passes raw frames directly to the VllmPDWorker via NATS and RDMA. ```mermaid flowchart LR HTTP --> processor processor --> HTTP processor --video_url--> video_encode_worker video_encode_worker --> processor video_encode_worker --frames--> pd_worker pd_worker --> video_encode_worker ``` **Launch:** ```bash cd $DYNAMO_HOME/examples/multimodal bash launch/video_agg.sh ``` **Client:** ```bash curl http://localhost:8000/v1/chat/completions \ -H "Content-Type: application/json" \ -d '{ "model": "llava-hf/LLaVA-NeXT-Video-7B-hf", "messages": [ { "role": "user", "content": [ { "type": "text", "text": "Describe the video in detail" }, { "type": "video_url", "video_url": { "url": "https://storage.googleapis.com/gtv-videos-bucket/sample/BigBuckBunny.mp4" } } ] } ], "max_tokens": 300, "stream": false }' | jq ``` ### Video Disaggregated Serving **Workflow:** For the LLaVA-NeXT-Video-7B model, frames are only required during the prefill stage. The VideoEncodeWorker is connected directly to the prefill worker, decoding the video into frames and passing them via RDMA. ```mermaid flowchart LR HTTP --> processor processor --> HTTP processor --video_url--> video_encode_worker video_encode_worker --> processor video_encode_worker --frames--> prefill_worker prefill_worker --> video_encode_worker prefill_worker --> decode_worker decode_worker --> prefill_worker ``` **Launch:** ```bash cd $DYNAMO_HOME/examples/multimodal bash launch/video_disagg.sh ``` ## Audio Serving ### Audio Aggregated Serving **Components:** - workers: [AudioEncodeWorker](https://github.com/ai-dynamo/dynamo/tree/main/examples/multimodal/components/audio_encode_worker.py) for decoding audio into embeddings, and [VllmPDWorker](https://github.com/ai-dynamo/dynamo/tree/main/examples/multimodal/components/worker.py) for prefilling and decoding. - processor: Tokenizes the prompt and passes it to the AudioEncodeWorker. - frontend: HTTP endpoint to handle incoming requests. **Workflow:** ```mermaid flowchart LR HTTP --> processor processor --> HTTP processor --audio_url--> audio_encode_worker audio_encode_worker --> processor audio_encode_worker --embeddings--> pd_worker pd_worker --> audio_encode_worker ``` **Launch:** ```bash pip install 'vllm[audio]' accelerate # multimodal audio models dependency cd $DYNAMO_HOME/examples/multimodal bash launch/audio_agg.sh ``` **Client:** ```bash curl http://localhost:8000/v1/chat/completions \ -H "Content-Type: application/json" \ -d '{ "model": "Qwen/Qwen2-Audio-7B-Instruct", "messages": [ { "role": "user", "content": [ { "type": "text", "text": "What is recited in the audio?" }, { "type": "audio_url", "audio_url": { "url": "https://raw.githubusercontent.com/yuekaizhang/Triton-ASR-Client/main/datasets/mini_en/wav/1221-135766-0002.wav" } } ] } ], "max_tokens": 6000, "temperature": 0.8, "stream": false }' | jq ``` ### Audio Disaggregated Serving **Workflow:** For the Qwen2-Audio model, audio embeddings are only required during the prefill stage. The AudioEncodeWorker is connected directly to the prefill worker. ```mermaid flowchart LR HTTP --> processor processor --> HTTP processor --audio_url--> audio_encode_worker audio_encode_worker --> processor audio_encode_worker --embeddings--> prefill_worker prefill_worker --> audio_encode_worker prefill_worker --> decode_worker decode_worker --> prefill_worker ``` **Launch:** ```bash pip install 'vllm[audio]' accelerate # multimodal audio models dependency cd $DYNAMO_HOME/examples/multimodal bash launch/audio_disagg.sh ``` ## NIXL Usage | Use Case | Script | NIXL Used? | Data Transfer | |----------|--------|------------|---------------| | EPD (Simple Aggregated) | `agg_multimodal.sh` | No | All in one worker | | E/PD (Encode Separate) | `agg_multimodal_epd.sh` | Yes | Encoder → PD (embeddings) | | E/P/D (Full Disaggregation) | `disagg_multimodal_epd.sh` | Yes | Encoder → Prefill (embeddings), Prefill → Decode (KV cache) | | EP/D (Llama 4) | `disagg_multimodal_llama.sh` | Yes | Prefill → Decode (KV cache) | | E/PD (EC Connector) | `agg_multimodal_ec_connector.sh` | No | ECConnector via Embedding Cache | ## ModelInput Types and Registration Dynamo's Rust SDK supports two input types that determine how the HTTP frontend preprocesses requests: | ModelInput Type | Preprocessing | Use Case | |-----------------|---------------|----------| | `ModelInput.Text` | None (raw text passed through) | Components that tokenize themselves | | `ModelInput.Tokens` | Rust SDK would tokenize (but bypassed in multimodal) | Components expecting pre-tokenized input | **Registration Pattern:** ```python # Processor - Entry point from HTTP frontend await register_llm( ModelInput.Text, # Frontend sends raw text ModelType.Chat, generate_endpoint, model_name, ... ) # Workers - Internal components await register_llm( ModelInput.Tokens, # Expect pre-tokenized input ModelType.Chat, # or ModelType.Prefill for prefill workers generate_endpoint, model_name, ... ) ``` ## Known Limitations - **Disaggregated flows require Python Processor** - All multimodal disaggregation requires the Python Processor component (`ModelInput.Text`). ## Supported Models The following models have been tested with Dynamo's vLLM multimodal backend: - **Qwen2.5-VL** - `Qwen/Qwen2.5-VL-7B-Instruct` - **Qwen3-VL** - `Qwen/Qwen3-VL-30B-A3B-Instruct-FP8` - **LLaVA 1.5** - `llava-hf/llava-1.5-7b-hf` - **Llama 4 Maverick** - `meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8` - **LLaVA Next Video** - `llava-hf/LLaVA-NeXT-Video-7B-hf` - **Qwen2-Audio** - `Qwen/Qwen2-Audio-7B-Instruct` For a complete list of multimodal models supported by vLLM, see [vLLM Supported Multimodal Models](https://docs.vllm.ai/en/latest/models/supported_models/#list-of-multimodal-language-models). Models listed there should work with Simple Aggregated Mode but may not be explicitly tested. ## Key Files | File | Description | |------|-------------| | `components/src/dynamo/vllm/main.py` | Worker initialization and setup | | `components/src/dynamo/vllm/args.py` | Command-line argument parsing | | `components/src/dynamo/vllm/multimodal_handlers/processor_handler.py` | Processor implementation | | `components/src/dynamo/vllm/multimodal_handlers/encode_worker_handler.py` | Encode worker implementations (custom and vLLM-native) | | `components/src/dynamo/vllm/multimodal_handlers/worker_handler.py` | PD/Prefill/Decode worker implementation |