KVBM Guide

Enable KV offloading using KV Block Manager (KVBM) for Dynamo deployments

View as Markdown

The Dynamo KV Block Manager (KVBM) is a scalable runtime component designed to handle memory allocation, management, and remote sharing of Key-Value (KV) blocks for inference tasks across heterogeneous and distributed environments. It acts as a unified memory layer for frameworks like vLLM and TensorRT-LLM.

KVBM is modular and can be used standalone via pip install kvbm or as the memory management component in the full Dynamo stack. This guide covers installation, configuration, and deployment of the Dynamo KV Block Manager (KVBM) and other KV cache management systems.

Table of Contents

Quick Start

Run KVBM Standalone

KVBM can be used independently without using the rest of the Dynamo stack:

$pip install kvbm

See the support matrix for version compatibility.

Build from Source

To build KVBM from source, see the detailed instructions in the KVBM bindings README.

Run KVBM in Dynamo with vLLM

Docker Setup

$# Start up etcd for KVBM leader/worker registration and discovery
$docker compose -f deploy/docker-compose.yml up -d
$
$# Build a dynamo vLLM container (KVBM is built in by default)
$./container/build.sh --framework vllm
$
$# Launch the container
$./container/run.sh --framework vllm -it --mount-workspace --use-nixl-gds

Aggregated Serving

$cd $DYNAMO_HOME/examples/backends/vllm
$./launch/agg_kvbm.sh

Verify Deployment

$curl localhost:8000/v1/chat/completions \
> -H "Content-Type: application/json" \
> -d '{
> "model": "Qwen/Qwen3-0.6B",
> "messages": [{"role": "user", "content": "Hello, how are you?"}],
> "stream": false,
> "max_tokens": 10
> }'

Alternative: Using Direct vllm serve

You can also use vllm serve directly with KVBM:

$vllm serve --kv-transfer-config '{"kv_connector":"DynamoConnector","kv_role":"kv_both", "kv_connector_module_path": "kvbm.vllm_integration.connector"}' Qwen/Qwen3-0.6B

Run KVBM in Dynamo with TensorRT-LLM

[!NOTE] Prerequisites:

  • Ensure etcd and nats are running before starting
  • KVBM only supports TensorRT-LLM’s PyTorch backend
  • Disable partial reuse (enable_partial_reuse: false) to increase offloading cache hits
  • KVBM requires TensorRT-LLM v1.2.0rc2 or newer

Docker Setup

$# Start up etcd for KVBM leader/worker registration and discovery
$docker compose -f deploy/docker-compose.yml up -d
$
$# Build a dynamo TRTLLM container (KVBM is built in by default)
$./container/build.sh --framework trtllm
$
$# Launch the container
$./container/run.sh --framework trtllm -it --mount-workspace --use-nixl-gds

Aggregated Serving

$# Write the LLM API config
$cat > "/tmp/kvbm_llm_api_config.yaml" <<EOF
$backend: pytorch
$cuda_graph_config: null
$kv_cache_config:
$ enable_partial_reuse: false
$ free_gpu_memory_fraction: 0.80
$kv_connector_config:
$ connector_module: kvbm.trtllm_integration.connector
$ connector_scheduler_class: DynamoKVBMConnectorLeader
$ connector_worker_class: DynamoKVBMConnectorWorker
$EOF
$
$# Start dynamo frontend
$python3 -m dynamo.frontend --http-port 8000 &
$
$# Serve the model with KVBM
$python3 -m dynamo.trtllm \
> --model-path Qwen/Qwen3-0.6B \
> --served-model-name Qwen/Qwen3-0.6B \
> --extra-engine-args /tmp/kvbm_llm_api_config.yaml &

Verify Deployment

$curl localhost:8000/v1/chat/completions \
> -H "Content-Type: application/json" \
> -d '{
> "model": "Qwen/Qwen3-0.6B",
> "messages": [{"role": "user", "content": "Hello, how are you?"}],
> "stream": false,
> "max_tokens": 30
> }'

Alternative: Using trtllm-serve

$trtllm-serve Qwen/Qwen3-0.6B --host localhost --port 8000 --backend pytorch --extra_llm_api_options /tmp/kvbm_llm_api_config.yaml

Run Dynamo with SGLang HiCache

SGLang’s Hierarchical Cache (HiCache) extends KV cache storage beyond GPU memory to include host CPU memory. When using NIXL as the storage backend, HiCache integrates with Dynamo’s memory infrastructure.

Quick Start

$# Start SGLang worker with HiCache enabled
$python -m dynamo.sglang \
> --model-path Qwen/Qwen3-0.6B \
> --host 0.0.0.0 --port 8000 \
> --enable-hierarchical-cache \
> --hicache-ratio 2 \
> --hicache-write-policy write_through \
> --hicache-storage-backend nixl
$
$# In a separate terminal, start the frontend
$python -m dynamo.frontend --http-port 8000
$
$# Send a test request
$curl localhost:8000/v1/chat/completions \
> -H "Content-Type: application/json" \
> -d '{
> "model": "Qwen/Qwen3-0.6B",
> "messages": [{"role": "user", "content": "Hello!"}],
> "stream": false,
> "max_tokens": 30
> }'

Learn more: See the SGLang HiCache Integration Guide for detailed configuration, deployment examples, and troubleshooting.

Disaggregated Serving with KVBM

KVBM supports disaggregated serving where prefill and decode operations run on separate workers. KVBM is enabled on the prefill worker to offload KV cache.

Disaggregated Serving with vLLM

$# 1P1D - one prefill worker and one decode worker
$# NOTE: requires at least 2 GPUs
$cd $DYNAMO_HOME/examples/backends/vllm
$./launch/disagg_kvbm.sh
$
$# 2P2D - two prefill workers and two decode workers
$# NOTE: requires at least 4 GPUs
$cd $DYNAMO_HOME/examples/backends/vllm
$./launch/disagg_kvbm_2p2d.sh

Disaggregated Serving with TRT-LLM

[!NOTE] The latest TensorRT-LLM release (1.3.0rc1) is currently experiencing a request hang when running disaggregated serving with KVBM. Please include the TensorRT-LLM commit id 18e611da773026a55d187870ebcfa95ff00c8482 when building the Dynamo TensorRT-LLM runtime image to test the KVBM + disaggregated serving feature.

$# Build the Dynamo TensorRT-LLM container using commit ID 18e611da773026a55d187870ebcfa95ff00c8482. Note: This build can take a long time.
$./container/build.sh --framework trtllm --tensorrtllm-commit 18e611da773026a55d187870ebcfa95ff00c8482 --tensorrtllm-git-url https://github.com/NVIDIA/TensorRT-LLM.git
$
$# Launch the container
$./container/run.sh --framework trtllm -it --mount-workspace --use-nixl-gds

[!NOTE] Important: After logging into the Dynamo TensorRT-LLM runtime container, copy the Triton kernels into the container’s virtual environment as a separate Python module.

$# Clone the TensorRT-LLM repo and copy the triton_kernels folder into the container as a Python module.
$git clone https://github.com/NVIDIA/TensorRT-LLM.git /tmp/TensorRT-LLM && \
>cd /tmp/TensorRT-LLM && \
>git checkout 18e611da773026a55d187870ebcfa95ff00c8482 && \
>cp -r triton_kernels /opt/dynamo/venv/lib/python3.12/site-packages/ && \
>cd /workspace && \
>rm -rf /tmp/TensorRT-LLM
$# Launch prefill worker with KVBM
$python3 -m dynamo.trtllm \
> --model-path Qwen/Qwen3-0.6B \
> --served-model-name Qwen/Qwen3-0.6B \
> --extra-engine-args /tmp/kvbm_llm_api_config.yaml \
> --disaggregation-mode prefill &

Configuration

Cache Tier Configuration

Configure KVBM cache tiers using environment variables:

$# Option 1: CPU cache only (GPU -> CPU offloading)
$export DYN_KVBM_CPU_CACHE_GB=4 # 4GB of pinned CPU memory
$
$# Option 2: Both CPU and Disk cache (GPU -> CPU -> Disk tiered offloading)
$export DYN_KVBM_CPU_CACHE_GB=4
$export DYN_KVBM_DISK_CACHE_GB=8 # 8GB of disk
$
$# [Experimental] Option 3: Disk cache only (GPU -> Disk direct offloading)
$# NOTE: Experimental, may not provide optimal performance
$# NOTE: Disk offload filtering not supported with this option
$export DYN_KVBM_DISK_CACHE_GB=8

You can also specify exact block counts instead of GB:

  • DYN_KVBM_CPU_CACHE_OVERRIDE_NUM_BLOCKS
  • DYN_KVBM_DISK_CACHE_OVERRIDE_NUM_BLOCKS

SSD Lifespan Protection

When disk offloading is enabled, disk offload filtering is enabled by default to extend SSD lifespan. The current policy only offloads KV blocks from CPU to disk if the blocks have frequency ≥ 2. Frequency doubles on cache hit (initialized at 1) and decrements by 1 on each time decay step.

To disable disk offload filtering:

$export DYN_KVBM_DISABLE_DISK_OFFLOAD_FILTER=true

Enable and View KVBM Metrics

Setup Monitoring Stack

$# Start basic services (etcd & natsd), along with Prometheus and Grafana
$docker compose -f deploy/docker-observability.yml up -d

Enable Metrics for vLLM

$DYN_KVBM_METRICS=true \
>DYN_KVBM_CPU_CACHE_GB=20 \
>python -m dynamo.vllm \
> --model Qwen/Qwen3-0.6B \
> --enforce-eager \
> --connector kvbm

Enable Metrics for TensorRT-LLM

$DYN_KVBM_METRICS=true \
>DYN_KVBM_CPU_CACHE_GB=20 \
>python3 -m dynamo.trtllm \
> --model-path Qwen/Qwen3-0.6B \
> --served-model-name Qwen/Qwen3-0.6B \
> --extra-engine-args /tmp/kvbm_llm_api_config.yaml &

Firewall Configuration (Optional)

$# If firewall blocks KVBM metrics ports
$sudo ufw allow 6880/tcp

View Metrics

Access Grafana at http://localhost:3000 (default login: dynamo/dynamo) and look for the KVBM Dashboard.

Available Metrics

MetricDescription
kvbm_matched_tokensNumber of matched tokens
kvbm_offload_blocks_d2hOffload blocks from device to host
kvbm_offload_blocks_h2dOffload blocks from host to disk
kvbm_offload_blocks_d2dOffload blocks from device to disk (bypassing host)
kvbm_onboard_blocks_d2dOnboard blocks from disk to device
kvbm_onboard_blocks_h2dOnboard blocks from host to device
kvbm_host_cache_hit_rateHost cache hit rate (0.0-1.0)
kvbm_disk_cache_hit_rateDisk cache hit rate (0.0-1.0)

Benchmarking KVBM

Use LMBenchmark to evaluate KVBM performance.

Setup

$git clone https://github.com/LMCache/LMBenchmark.git
$cd LMBenchmark/synthetic-multi-round-qa

Run Benchmark

$# Synthetic multi-turn chat dataset
$# Arguments: model, endpoint, output prefix, qps
$./long_input_short_output_run.sh \
> "Qwen/Qwen3-0.6B" \
> "http://localhost:8000" \
> "benchmark_kvbm" \
> 1

Average TTFT and other performance numbers will be in the output.

TIP: If metrics are enabled, observe KV offloading and onboarding in the Grafana dashboard.

Baseline Comparison

vLLM Baseline (without KVBM)

$vllm serve Qwen/Qwen3-0.6B

TensorRT-LLM Baseline (without KVBM)

$# Create config without kv_connector_config
$cat > "/tmp/llm_api_config.yaml" <<EOF
$backend: pytorch
$cuda_graph_config: null
$kv_cache_config:
$ enable_partial_reuse: false
$ free_gpu_memory_fraction: 0.80
$EOF
$
$trtllm-serve Qwen/Qwen3-0.6B --host localhost --port 8000 --backend pytorch --extra_llm_api_options /tmp/llm_api_config.yaml

Troubleshooting

No TTFT Performance Gain

Symptom: Enabling KVBM does not show TTFT improvement or causes performance degradation.

Cause: Not enough prefix cache hits on KVBM to reuse offloaded KV blocks.

Solution: Enable KVBM metrics and check the Grafana dashboard for Onboard Blocks - Host to Device and Onboard Blocks - Disk to Device. Large numbers of onboarded KV blocks indicate good cache reuse:

Grafana Example

KVBM Worker Initialization Timeout

Symptom: KVBM fails to start when allocating large memory or disk storage.

Solution: Increase the leader-worker initialization timeout (default: 1800 seconds):

$export DYN_KVBM_LEADER_WORKER_INIT_TIMEOUT_SECS=3600 # 1 hour

Disk Offload Fails to Start

Symptom: KVBM fails to start when disk offloading is enabled.

Cause: fallocate() is not supported on the filesystem (e.g., Lustre, certain network filesystems).

Solution: Enable disk zerofill fallback:

$export DYN_KVBM_DISK_ZEROFILL_FALLBACK=true

If you encounter “write all error” or EINVAL (errno 22), also try:

$export DYN_KVBM_DISK_DISABLE_O_DIRECT=true

Developing Locally

Inside the Dynamo container, after changing KVBM-related code (Rust and/or Python):

$cd /workspace/lib/bindings/kvbm
$uv pip install maturin[patchelf]
$maturin build --release --out /workspace/dist
$uv pip install --upgrade --force-reinstall --no-deps /workspace/dist/kvbm*.whl

See Also