Planner Guide
Deployment, configuration, and integration guide for the Dynamo SLA Planner. For a quick overview, see the Planner README. For architecture internals, see Planner Design.
Deployment
Prerequisites
Before deploying the planner, ensure:
- Dynamo platform installed with the operator running (see Installation Guide)
- kube-prometheus-stack installed and running (required for SLA planner metric collection)
- Image pull secrets configured if using private registries (typically
nvcr-imagepullsecretfor NVIDIA images) - Sufficient GPU resources available in your cluster for profiling
- Runtime images available that contain both profiler and runtime components
Container Images
Each DGDR requires container images for the profiling and deployment process:
profilingConfig.profilerImage (Required): The container image used for the profiling job. Must contain the profiler code and dependencies for SLA-based profiling.
deploymentOverrides.workersImage (Optional): The container image used for DGD worker components (frontend, workers, planner). Used for:
- Temporary DGDs created during online profiling (for performance measurements)
- The final DGD deployed after profiling completes
If workersImage is omitted, the image from the base config file (e.g., disagg.yaml) is used. Public images are available from 0.6.1 onward.
What is a DynamoGraphDeploymentRequest (DGDR)?
A DGDR is a Kubernetes Custom Resource that serves as the primary interface for deploying models with specific performance and resource constraints. It specifies:
- What model to deploy (
model) - How it should perform (SLA targets:
ttft,itl) - Where it should run (optional GPU preferences)
- Which backend to use (
backend: vllm, sglang, or trtllm) - Which images to use (
profilingConfig.profilerImage,deploymentOverrides.workersImage)
The Dynamo Operator watches for DGDRs and automatically:
- Discovers available GPU resources in your cluster
- Runs profiling (online or offline) to find optimal configurations
- Generates an optimized DynamoGraphDeployment (DGD) configuration
- Deploys the DGD to your cluster
Key Benefits:
- Declarative: Specify what you want, not how to achieve it
- Automated: No manual profiling job setup or result processing
- SLA-Driven: Ensures deployments meet your performance requirements
- Integrated: Works seamlessly with the Dynamo Operator
DGDR Workflow
The DGDR workflow automates the entire process from SLA specification to deployment:
- Define SLAs: Specify performance requirements (TTFT, ITL) and model information
- Automatic Profiling: The operator profiles your model to find optimal configurations
- Auto-Deploy: The system deploys the optimal configuration that meets your SLAs
Monitoring Progress
Watch DGDR status:
DGDR Status States:
Pending: Initial state, preparing to profileProfiling: Running profiling job (20-30 seconds for AIC, 2-4 hours for online)Deploying: Generating and applying DGD configurationReady: DGD successfully deployed and runningFailed: Error occurred (check events for details)
Relationship to DGD
- DGDR: High-level “intent” — what you want deployed
- DGD: Low-level “implementation” — how it’s deployed
The DGDR controller generates a DGD that:
- Uses optimal TP configurations from profiling
- Includes the SLA planner for autoscaling
- Has deployment and engine settings tuned for your SLAs
The generated DGD is tracked via labels:
Configuration
DGDR Configuration
Required Fields
Optional Fields
SLA Configuration
Choosing SLA Values:
- ISL/OSL: Based on your expected traffic patterns
- TTFT: First token latency target (lower = more GPUs needed)
- ITL: Token generation latency target (lower = more GPUs needed)
- Trade-offs: Tighter SLAs require more GPU resources
For comprehensive documentation of all configuration options, see the DGDR Configuration Reference.
Profiling Methods
Choose between online profiling (real measurements, 2-4 hours) or offline profiling with AI Configurator (estimated, 20-30 seconds):
For detailed comparison, supported configurations, and limitations, see SLA-Driven Profiling Documentation.
Load Predictors
The SLA planner forecasts the number of requests, ISL, and OSL in the next adjustment interval. Four prediction models are supported:
Constant Predictor
- Use case: Stable workloads with long prediction intervals
- Behavior: Assumes next load equals current load
- Configuration:
load-predictor: "constant"
ARIMA Predictor
- Use case: Time-series data with trends and seasonality
- Behavior: Uses auto-ARIMA to fit optimal model parameters
- Configuration:
load-predictor: "arima" - Tunable parameters:
--load-predictor-log1p: modellog1p(y)instead ofy. If not set, ARIMA starts in raw space, and if it collapses to(0,d,0), it falls back tolog1pautomatically.
Kalman Predictor
- Use case: Low-latency online forecasting (observe 1 -> predict 1) with smooth adaptation
- Behavior: Local linear trend Kalman filter (fast online updates; good default when ARIMA collapses to mean-only)
- Configuration:
load-predictor: "kalman" - Tunable parameters:
--kalman-q-level: process noise for level (higher = more responsive)--kalman-q-trend: process noise for trend (higher = trend changes faster)--kalman-r: measurement noise (lower = trusts new measurements more)--kalman-min-points: minimum points before forecasting--load-predictor-log1p: modellog1p(y)instead ofy(often helps request-rate/count series)
Prophet Predictor
- Use case: Complex seasonal patterns and trend changes
- Behavior: Facebook’s Prophet model for time-series forecasting
- Configuration:
load-predictor: "prophet" - Tunable parameters:
--prophet-window-size: bounds internal history to control refit cost--load-predictor-log1p: modellog1p(y)instead ofy
Warm-starting Load Predictors (Optional)
You can warm-start load predictors with a mooncake-style JSONL trace file:
- CLI argument:
--load-predictor-warmup-trace <path/to/trace.jsonl> - Effect: preloads predictors with historical request-count / ISL / OSL samples extracted from the trace
Planner Scaling Parameters
Planner Configuration Passthrough
Add planner-specific settings in the DGDR:
Integration
Prometheus Setup
The planner queries Prometheus to collect frontend request metrics. The architecture:
Components:
- Frontend: Serves requests and exposes
/metrics - Prometheus: Scrapes frontend metrics every 5s (configurable in podmonitor manifest)
- Planner: Queries Prometheus and adjusts worker scaling every adjustment interval
- Workers: Prefill and backend workers handle inference
The planner requires a frontend that reports metrics at the /metrics HTTP endpoint with request count, ISL, OSL, TTFT, and ITL in the correct format. The Dynamo frontend provides these metrics automatically.
Prometheus endpoint configuration:
If you see errors like “Failed to resolve prometheus service”, ensure PROMETHEUS_ENDPOINT points to your Prometheus service.
Virtual Deployment
The SLA planner supports virtual deployment mode for customized environments (e.g., custom orchestrators) through the VirtualConnector. This connector enables the planner to communicate scaling decisions without directly managing Kubernetes resources.
The VirtualConnector acts as a bridge between the SLA planner and external deployment environments. Instead of PATCHing DGD resources, it writes scaling decisions and waits for the external environment to acknowledge completion.
Scaling Decision Flow
- Decision Generation: The planner calculates optimal worker counts
- Change Detection: Skips scaling if target counts match current counts, logging:
"No scaling needed (prefill=X, decode=Y)" - Readiness Check: Verifies previous scaling operations completed by checking
scaled_decision_id >= decision_id - Timeout Handling: If not acknowledged within 30 minutes (1800 seconds), proceeds with new decisions
- Completion Tracking: Optionally waits for scaling completion confirmation (blocking mode)
Configuration
To use virtual deployment mode:
Deployment Environment Requirements
The external deployment environment must use VirtualConnectorClient:
- Monitor Planner: Continuously watch for scaling decisions:
await client.wait()(blocks until change) - Parse Decisions: Read values:
decision = await client.get() - Execute Scaling: Apply the scaling decisions to your infrastructure
- Acknowledge Completion: Mark done:
await client.complete(decision)
A scaling decision (returned by client.get()) contains:
num_prefill_workers: Target number of prefill workers (-1 if not set)num_decode_workers: Target number of decode workers (-1 if not set)decision_id: Incremental ID for each scaling decision
See components/planner/test/test_virtual_connector.py for a full example.
Grafana Dashboard
Deploy the planner Grafana dashboard:
Follow Dynamo Metrics Collection on Kubernetes to access the Grafana UI and select the Dynamo Planner Dashboard.
The dashboard displays:
- Worker Counts & GPU Usage: Current prefill/decode worker counts and cumulative GPU hours
- Observed Metrics: Real-time TTFT, ITL, request rate, and sequence lengths from Prometheus
- Predicted Metrics: Planner’s load predictions and recommended replica counts
- Correction Factors: How the planner adjusts predictions based on observed vs expected performance
Use the Namespace dropdown at the top of the dashboard to filter metrics for your deployment namespace.
DGDR Immutability
DGDRs are immutable. To update SLAs or configuration:
- Delete the existing DGDR:
kubectl delete dgdr sla-aic - Create a new DGDR with updated specifications
Manual Deployment Control
Option 1: Use DGDR-Generated Configuration (Recommended)
Disable auto-deployment to review the generated DGD before applying:
Then manually extract and apply:
Option 2: Use Standalone Planner Templates (Advanced)
For advanced use cases, use the standalone planner templates in examples/backends/*/deploy/disagg_planner.yaml:
Accessing Profiling Artifacts
By default, profiling jobs save essential data to ConfigMaps. For detailed artifacts, configure the DGDR to use dynamo-pvc:
ConfigMaps (always created):
- Generated DGD configuration
- Profiling data for Planner (
.jsonfiles)
PVC (optional):
- Performance plots (PNGs)
- DGD configuration and logs for each profiled deployment
- AIPerf profiling artifacts
- Raw profiling data (
.npzfiles) - Profiler log
Troubleshooting
Quick Diagnostics
Common Issues
For comprehensive troubleshooting including AI Configurator constraints, performance debugging, and backend-specific issues, see SLA-Driven Profiling Troubleshooting.
Related Documentation
- Planner README — Overview and quick start
- Planner Examples — DGDR YAML examples and sample configurations
- Planner Design — Architecture deep-dive for contributors
- DGDR API Reference
- Pre-Deployment Profiling
- Dynamo Operator Guide